

HYDRAULIC TURBOMACHINES

Exercises 4 Axial Turbines

Hydropower plant equipped with Kaplan turbines

The Gezhouba power plant is located in the Hubei province, China (the frequency of the electrical grid is equal to $f_{grid} = 50$ Hz). It is equipped with 2 Kaplan turbines of 176 MW and 5 Kaplan turbines of 129 MW. In this problem, we will investigate the 176 MW units. A cut-view of the Kaplan unit is given in Figure 1.

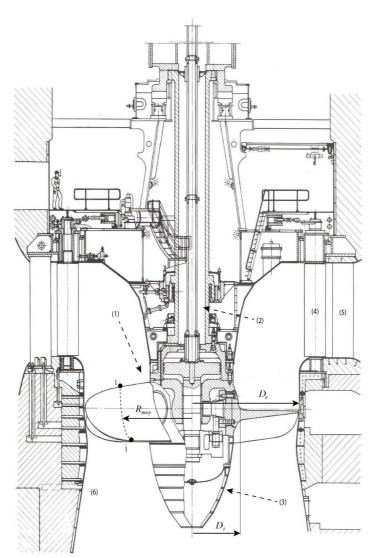


Figure 1 – Kaplan turbine unit - Gezhouba power plant.

7. Place in Figure 1 the ID number of the following components:

Number	Name
(1)	
(2)	
(3)	
(4)	
(5)	
(6)	

- 8. Compute the specific potential energy of the installation for an upstream reservoir level of $Z_B = 45$ m and a downstream reservoir level of $Z_{\overline{B}} = 25$ m. The value of the gravitational constant is g = 9.794 m s⁻².
- 9. For a nominal discharge of $Q = 1130 \text{ m}^3\text{s}^{-1}$, the head losses of the installation have been measured and are equal to $\sum gH_r = 13.48 \text{ J kg}^{-1}$. Compute the available specific energy of the turbine. Deduce the net head H of the turbine.
- 10. For this turbine, the pole number of the generator is equal to $Z_0 = 110$. Compute the runner frequency n and the specific speed v of the runner.
- 11. Compute P_h , the hydraulic power. The value of water density ρ is 998 kg m⁻³.
- 12. We assume an energy efficiency for this turbine of $\eta_e = 92$ %. Compute the transformed (or supplied) specific energy E_t .
- 13. Compute the torque experienced by the runner shaft T_t .
- 14. Compute the mechanical efficiency (defined by $\eta_{me} = \eta_{rm} \cdot \eta_m$), and global machine efficiency. Neglect the generator losses.
- 15. The streamline $1-\overline{1}$ is supposed to be on a cylinder with a mean radius R_m . The internal and external diameters are equal to $D_i = 4.520$ m and $D_e = 11.3$ m. Compute the peripheral runner speed U_1 and $U_{\overline{1}}$.
- 16. By considering that the flow at the runner outlet is purely axial, compute Cu_1 the peripheral component of the absolute velocity at the runner inlet.
- 17. Compute the meridional components of the absolute velocity Cm_1 et Cm_{-1} .
- 18. From the previous results, compute the angles α_1 and β_1 at the runner inlet, and α_{-1} and β_{-1} at the runner outlet.
- 19. Finally, sketch the corresponding velocity triangles at the runner inlet and outlet.

08.11.2023 EPFL Page 2/2